Многогранники и их практическое применение1



ФГБОУ ВПО Ижевская ГСХА

Конференция

на тему: «Многогранники и их практическое применение».

Автор работы: студенты 421 группы

Кузнецов М. Н.

Леконцев М. М.

Руководитель: Карпова В.С.

Ижевск 2014

Оглавление

Введение3

Основная часть5

2.1.Элементы многогранника5

2.2.Классификация многогранников5

2.3.Типы правильных многогранников:6

2.4.Полуправильные многогранники или Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:7

Практическое применение9

3.1.Многогранники в природе9

3.2.Многогранники в искусстве и архитектуре10

Литература:12

Цель работы: расширить понятие многогранника и показать его применение в различных сферах деятельности.

Задачи:

исследовать понятие многогранника и его историю;

изучить практическое применение фигуры;

способствовать формированию и развитию эвристического мышления.

Введение

Поверхность, составленную из многоугольников и ограничивающую некоторые геометрическое тело, называют многогранной поверхностью или многогранником.

Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников. Многоугольники, которые ограничивают многогранник, называются гранями, линии пересечения граней называются ребрами.

Многогранники могут иметь разнообразное и очень сложное строение. Различные постройки, например строящиеся дома из кирпичей и бетонных блоков, представляют собой примеры многогранников. Другие примеры можно найти среди мебели, например стол. В химии форма молекул углеводорода представляет собой тетраэдр, правильного двадцатигранника, куб. В физики примером многогранников служат кристаллы.

С древнейших времен представления о красоте связывали с симметрией. Наверное, этим объясняется интерес человека к многогранникам — удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей, которых поражала красота, совершенство, гармония этих фигур.

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии.

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

Конспекты уроков боковая поверхность многогранниковОдной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики — это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

Пифагорейцы полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных тел:

Вселенная — додекаэдр

Земля — куб

Огонь — тетраэдр

Вода — икосаэдр

Воздух — октаэдр

Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ — идеалист Платон. С тех пор правильные многогранники стали называться Платоновыми телами.

Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани — правильные многоугольники. К каждой вершине правильного многогранника сходится одно и то же число рёбер. Все двугранные углы при рёбрах и все многогранные углы при вершинах  правильного многоугольника равны.  Платоновы тела — трехмерный аналог плоских правильных многоугольников. 

Теория многогранников является современным разделом математики. Она тесно связана с топологией, теорией графов, имеет большое значение как для теоретических исследований по геометрии, так и для практических приложений в других разделах математики, например, в алгебре, теории чисел, прикладной математики — линейном программировании, теории оптимального управления. Таким образом, данная тема является актуальной, а знания по данной проблематике – важными для современного общества.

Основная часть

Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.

Приведем определение многогранника, равносильное первому определению многогранника.

Многогранник это фигура, являющаяся объединением конечного числа тетраэдров, для которых выполнены следующие условия:

1) каждые два тетраэдра не имеют общих точек, либо имеют общую вершину, либо только общее ребро, либо целую общую грань;

2) от каждого тетраэдра к другому можно перейти по цепочке тетраэдра, в которой каждый последующий прилегает к предыдущему по целой грани.

Элементы многогранника

Грань многогранника – это некоторый многоугольник (многоугольником называется ограниченная замкнутая область, граница которой состоит из конечного числа отрезков).

Стороны граней называются ребрами многогранника, а вершины граней – вершинами многогранника. К элементам многогранника, кроме его вершин, ребер и граней, относятся также плоские углы его граней и двугранные углы при его ребрах. Двугранный угол при ребре многогранника определяется его гранями, подходящими к этому ребру.

Классификация многогранников

Выпуклый многогранник — это многогранник, любые две точки которого соединимы в нем отрезком. Выпуклые многогранники обладают многими замечательными свойствами.

Теорема Эйлера. Для любого выпуклого многогранника ВР+Г=2,

Где В – число его вершин, Р — число его ребер, Г — число его граней.

Теорема Коши. Два замкнутых выпуклых многогранника, одинаково составленные из соответственно равных граней равны.

Выпуклый многогранник считается правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходиться одно и то же число ребер.

Правильный многогранник

Многогранник называется правильным, если, во-первых, он выпуклый, во-вторых, все его грани — равные друг другу правильные многоугольники, в-третьих, в каждой его вершине сходятся одинаковое число граней, и, в-четвертых, все его двугранные углы равны.

Существует пять выпуклых правильных многогранников — тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются «Начала» Евклида (древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике). Почему правильные многогранники получили такие имена? Это связано с числом их граней. Тетраэдр имеет 4 грани, в переводе с греческого «тетра» — четыре, «эдрон» — грань. Гексаэдр (куб) имеет 6 граней, «гекса» — шесть; октаэдр — восьмигранник, «окто» — восемь; додекаэдр — двенадцатигранник, «додека» — двенадцать; икосаэдр имеет 20 граней, «икоси» — двадцать.

Типы правильных многогранников:

1) Правильный тетраэдр (составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольник. Следовательно, сумма плоских углов при каждой вершине равна 1800);

2) Куб — параллелепипед, все грани которого – квадраты. Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 2700.

3) Правильный октаэдр или просто октаэдрмногогранник, у которого восемь правильных треугольных граней и в каждой вершине сходятся по четыре грани. Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 2400. Его можно построить, сложив основаниями две пирамиды, в основании которых квадраты, а боковые грани — правильные треугольники. Ребра октаэдра можно получить, соединяя центры соседних граней куба, если же соединить центры соседних граней правильного октаэдра, то получим ребра куба. Говорят, что куб и октаэдр двойственны друг другу.

4) Икосаэдр — составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 3000.

5) Додекаэдр — многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 3240.

Додекаэдр и икосаэдр тоже двойственны друг другу в том смысле, что, соединив отрезками центры соседних граней икосаэдра, мы получим додекаэдр, и наоборот.

Правильный тетраэдр двойственен сам себе.

При этом не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n ≥ 6.

Правильным многогранником называется многогранник, у которого все грани правильные равные многоугольники, и все двугранные углы равны. Но есть и такие многогранники, у которых все многогранные углы равны, а грани — правильные, но разноименные правильные многоугольники. Многогранники такого типа называются равноугольно-полуправильными многогранниками. Впервые многогранники такое типа открыл Архимед. Им подробно описаны 13 многогранников, которые позже в честь великого ученого были названы телами Архимеда. Это усеченный тетраэдр, усеченный оксаэдр, усеченный икосаэдр, усеченный куб, усеченный додекаэдр, кубооктаэдр, икосододекаэдр, усеченный кубооктаэдр усеченный икосододекаэдр, ромбокубооктаэдр, ромбоикосододекаэдр, «плосконосый» (курносый) куб, «плосконосый» (курносый) додекаэдр.

Полуправильные многогранники или Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:

Все грани являются правильными многоугольниками двух или более типов (если все грани — правильные многоугольники одного типа, это — правильный многогранник).

Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности все многогранные углы при вершинах конгруэнтны.

Кроме полуправильных многогранников из правильных многогранников — Платоновых тел, можно получить так называемые правильные звездчатые многогранники. Их всего четыре, они называются также телами Кеплера-Пуансо. Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым Практическое применение объемов тел и Многогранниковдвум: большой звездчатый додекаэдр и большой икосаэдр.

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплер присвоил этой фигуре имя «стелла октангула» — «восьмиугольная звезда». Она встречается и в природе: это так называемый двойной кристалл.

В определении правильного многогранника сознательно — в расчете на кажущуюся очевидность — не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера — Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова Линейная система выпуклых многогранников и телтела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур — грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров — «стелла октангула», которая называется «продолженным Конспекты уроков боковая поверхность многогранниковоктаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них — малый звездчатый додекаэдр, полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы Практическое применение объемов тел и Многогранниковдвенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г—Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому Конспекты уроков боковая поверхность многогранниковмногограннику неприменимо слово «правильный» — ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не Многогранники и их применениедодумался, что у полученной им фигуры есть двойник.

Многогранник, который называется «большой додекаэдр» — построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдр был впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр, честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

Практическое применение

Многогранники в природе

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Линейная система выпуклых многогранников и тел

Алмаз (октаэдр)

Конспекты уроков боковая поверхность многогранников

Шеелит (пирамида)

Практическое применение объемов тел и Многогранников

Хрусталь (призма)

Линейная система выпуклых многогранников и телПоваренная соль (куб)

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки — это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Конспекты уроков боковая поверхность многогранниковПравильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник. Практическое применение объемов тел и Многогранников

Также мы можем наблюдать многогранники в виде цветов. Ярким примером могут служить кактусы.

Многогранники в искусстве и архитектуре

Великая пирамида в Гизе является одним из 7 чудес древности. Кроме того, это единственное из чудес, сохранившееся до наших дней. Во времена своего создания Великая пирамида была самым высоким сооружением в мире. И удерживала она этот рекорд, по всей видимости, почти 4000 лет.

Пирамиды стоят на древнем кладбище в Гизе, на противоположном от Каира, столицы современного Египта, берегу реки Нил. Некоторые археологи считают, что, возможно, на строительство Великой пирамиды 100 000 человек потребовалось 20 лет. Она была создана из 2 миллионов каменных блоков, каждый из которых весил не менее 2,5 тонн. Рабочие подтаскивали их к месту, используя пандусы, блоки и рычаги, а затем подгоняли друг к другу, без раствора.

В III веке до н.э. был построен Александрийский маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем — столб дыма. Это был первый в мире маяк, и простоял он 1500 лет. Маяк был построен на маленьком острове Фарос в Средиземном море, около берегов Александрии. Этот оживленный порт основал Александр Великий во время посещения Египта. Сооружение назвали по имени острова. На его строительство, должно быть, ушло 20 лет, а завершен он был около 280 г. до н.э., во времена правления Птолемея II, царя Египта. Фаросский маяк состоял из трех мраморных башен, стоявших на основании из массивных каменных блоков. Первая башня была прямоугольной, в ней находились комнаты, в которых жили рабочие и солдаты. Над этой башней располагалась меньшая, восьмиугольная башня со спиральным пандусом, ведущим в верхнюю башню. Верхняя башня формой напоминала цилиндр, в котором горел огонь, помогавший кораблям благополучно достигнуть бухты. На вершине башни стояла статуя Зевса Спасителя. Общая высота маяка составляла 117 метров.

В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы, архитекторы, художники. Леонардо да  Винчи (1452-1519) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он  проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли «О божественной пропорции».

Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471-1528гг.), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр.

Голландский художник Мориц Корнилис Эшер, родившийся в 1989 году в Леувардене, создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Правильные геометрические тела — многогранники — имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. На гравюре «Четыре тела» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника.

Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос». В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции — это окно, которое отражается левой верхней частью сферы.

Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра «Звезды», на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он поместил внутрь центральной фигуры хамелеонов, чтобы затруднить восприятие всей фигуры. Таким образом, необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

Литература:

Александров А. Д. и др. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик. – 3-е изд., перераб. — М.: Просвещение, 1992 – 464 с.

Атанасян Н. Г. Геометрия 10-11 – М.: Просвещение, 2000

Гончар В. В. Модели многогранников. – М.: Аким, 1997. – 64 с.

Математика: Школьная энциклопедия / гл. ред. Никольский С. М. – М.: Научное изд. «Большая Российская энциклопедия», 1996

Савин А. П. Энциклопедический словарь юного математика. – М.: Педагогика, 1985. – 352 с.

Смирнова И. М., Смирнов В. А. Геометрия, 10-11 классы: Учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни). – М.: Мнемозина, 2009

Советская энциклопедия – М., 1979

Шашкин Ю. А. Эйлерова характеристика – М.: Наука, 1984. – 96 с.




map