Организация деятельности учащихся при изучении длины



Организация деятельности учащихся при изучении длины.

(по материалам методического пособия Овчинниковой М.В. Методика изучения темы «Величины» на уроках математики в начальных классах)

Знание мер длины, умение находить длину, ширину, высоту и т. п. необходимы учащимся и в быту, и при овладении профессией. Со всеми мерами длины и их соотношениями учащиеся начальной школы знакомятся в течение всего времени обучения в младших классах, закрепление же этих мер проходит в течение всех лет обучения в школе.

Знакомство с понятиями длинный – короткий, широкий – узкий, высокий – низкий учащиеся получают еще в дошкольный период, коррекция этих понятий осуществляется в дочисловой период.

План изучения темы и время введения

(здесь и далее в соответствии с программой 1-3, учебники Б1, Б2, Б3).

1 класс

1. Понятие длины как свойства предметов. Прямая и кривая линии.

2. Отрезок. Сравнение отрезков.

3. Сантиметр.

4. Дециметр.

5. Метр — 1 класс.

2 класс

6. Миллиметр, километр.

3 класс

7. Упорядочивание представлений о длине и единицах ее измерения – 3 класс.

Задачи изучения темы:

1. Сформировать понятие длины как свойства предметов.

2. Познакомить с единицами длины и соотношениями между ними.

3. Сформировать умения измерять длину данных отрезков и чертить отрезки заданной длины, сравнивать длины.

4. Научить выражать величины в меньших и больших единицах.

5. Научить выполнять действия над величинами устно и в столбик.

Предварительно отметим, что измерение длин различными мерками предусмотрено программой детского сада, поэтому многие дети уже знакомы с измерением отрезков различными мерками.

Подготовительной работой к введению понятия длины отрезка должны быть упражнения следующего характера. Учитель с первых уроков уточняет отношения длиннее – короче, шире – уже, дальше – ближе. Именно этому помогают упражнения на сравнения предметов по длине (кто выше? что толще? что длиннее?). Важным шагом в формировании понятия длины является знакомство с прямой линией и отрезком как «носителями» линейной протяженности. Сравнивая отрезки «на глаз», дети получают представления о равных и неравных отрезках.

При введении (или обобщении) понятия «длина» внимание учащихся необходимо сосредоточить на самом термине «длина», разъяснив соответствующим образом его значение. Так, при проведении беседы можно предложить учащимся сравнить длину карандаша и ручки, которые лежат у них на партах. При сравнении используется прием приложения. Затем можно предложить сравнить по картинке длину ручки и кисточки (ручка короче, кисточка длиннее), сравнить длину красного карандаша и ручки (красный карандаш короче, ручка длиннее). В данной ситуации дети используют сравнение длин предметов «на глаз», т.к. изображения нельзя сравнить ни наложением, ни приложением. Далее представления учащихся уточняются: нарисованные предметы обладают свойством, которое называется длина. Данные предметы можно сравнивать по длине. Отрезки тоже можно сравнивать по длине. На рисунке должно быть хорошо видно, длина какого отрезка больше, а какого меньше. Эти способы сравнения («на глаз», наложением и приложением) можно назвать неопосредованными способами сравнения.

При использовании мерок (посредников) мы будем применять опосредованные способы сравнения.

Для знакомства с другими способами сравнения длин отрезков рекомендуется организовать практическую работу. Используя полоски из различных материалов, различных цветов, различной длины как модели отрезков, учащиеся сравнивают длины отрезков с помощью различных мерок. Меркой могут выступать узкие полоски бумаги, палочки разной длины и т.д.

После проведения практических работ по определению длины предметов различными мерками, у ребят возникает проблема, как же договориться, как измерять длины, чтобы при измерении равных отрезков у всех были одинаковые результаты? Делается вывод, что необходима единая единица длины.

Такой единицей измерения является сантиметр. Учитель демонстрирует модель сантиметра в виде узкой бумажной полоски. Сантиметр сравнивается с шириной пальца, с длиной двух клеточек тетради.

Затем знакомит учащихся с линейкой, с правилами пользования данным инструментом для измерения длин отрезков.

Итак, первой единицей измерения отрезков (при изучении чисел от 1 до 10) является 1 см. Учитель предлагает начертить дома еще один отрезок длиной 1 см и изготовить его модель из цветной бумаги или проволоки.

При помощи модели ученики должны уметь решить следующие задачи:

1. Измерить заданный отрезок. При этом ученик должен: а) точно приложить конец модели сантиметра к одному из концов отрезка; б) с помощью карандаша на отрезке отметить другой конец модели сантиметра; в) от этого конца продолжить откладывать мерку до тех пор, пока не последняя отметка не совпадет со вторым концом отрезка; г) пересчитав количество вложенных в отрезок моделей, сделать вывод о длине отрезка в см).

2. Начертить отрезок заданной длины. При этом ученик должен: а) провести по линии тетради прямую; б) отметить на ней точку отсчета; в) в нужном направлении откладывать модель, ставя карандашом засечки, отметить второй конец отрезка.

Такое пошаговое построение позволяет сформировать у детей необходимые в дальнейшем представления о предупреждении ошибок при дальнейшем измерении.

Внимание!

Основные ошибки, которые допускают учащиеся при построении и измерении отрезков:

а) неправильная установка линейки (не с нуля, а с начала линейки);

б) начало отсчета с позиции 1, а не ноль;

в) наклон головы влево или вправо, что искажает результат (смотреть на линейку необходимо строго вертикально).

Следующая единица измерения длины – дециметр вводится при изучении чисел от 11 до 20. Мотивацией является потребность измерять соответствующие длины (длину парты). Моделью сантиметра длину парты измерять долго. Нужна новая единица измерения. Методика аналогична методике ознакомления с сантиметром. Изготавливается модель (картон, дерево). Сначала учитель показывает модель в 1 дм, а затем 1 дм сравнивает с 1 см. Затем вместе с детьми путем прикладывания просчитывается, сколько сантиметров в 1 дм. Делается вывод, что 1 дм = 10 см и, наоборот, 10 см = 1 дм. Чтобы учащиеся лучше запомнили протяженность 1 дм, надо, чтобы каждый изготовил из плотной бумаги дециметр, вырезал его, измерил им ленту, бечевку и другие предметы. Учащихся знакомят с обозначением дециметра при числах 1 дм, 2 дм и т.д. Моделью дециметра измеряют отрезки, сначала содержащие лишь целое число дм, а потом – дм и см с использованием уже двух мерок – дм и см.

С единицей измерения длины метром дети знакомятся после изучения дециметра при изучении чисел от 21 до 100.

Мотивация к введению новой единицы измерения – потребность измерить длину и ширину класса, коридора и т.д. Попробовав измерять уже знакомыми единицами длины сантиметром и дециметром, дети говорят, что это очень неудобно, получаются большие числа. Учитель просит 3-4 человека измерить длину и ширину класса шагами и результаты измерений, т.е. количество шагов, записать на доске. Сначала дети определяют длину и ширину класса шагами. Они считают количество шагов, уложившихся по ширине или длине класса. Потом можно измерить длину и ширину класса веревкой. Дети растягивают веревку и считают количество шагов от начала до конца веревки и т.д. Когда дети закончат измерять расстояние шагами, запишут результаты на доске, учитель обращает внимание на результаты. Почему они разные? Потому что у всех разные шаги! Нужна новая единица измерения. Потом детям демонстрируется деревянный метр, предметы длиной в 1 м. Проводится практическая работа по измерению длины и ширины класса деревянным метром. Можно продемонстрировать рулетку, складной метр, портняжный «метр». Кроме того, детям можно сказать, что метр можно сделать самим иликупитьв магазине. Метр может быть сделан из дерева (деревянная линейка длиной 1 м), из металла (метр металлический), из клеенки, из бечевки и т.д.

Необходимо добиться, чтобы учащиеся не относили длину 1 м только к одному предмету, например к деревянной линейке. Нужно довести до сознания учащихся, что метр – это определенное расстояние, протяженность.

Измерения не должны быть самоцелью. Их обязательно нужно связать с какой-либо жизненной ситуацией, с игрой (например, с игрой «Магазин»). В качестве товаров в таком магазине могут быть лента, тесьма, резинка, лоскуты материи, полоски бумаги.

На дом целесообразно задать измерить что-либо дома: высоту дверей, холодильника, длину кухни, ширину коридора и т.д. Дети с удовольствием занимаются измерением.

На следующих уроках необходимо установить соотношения между м, дм и см. Причем имеет смысл работать по равенствам, как в прямом, так и в обратном прочтении. Таким образом, ознакомившись с единицами измерения длины – сантиметром, дециметром, метром, школьники учатся выражать длину не одной, а несколькими единицами измерения.

Вместе с детьми составляется таблица:

С самого начала необходимо учить детей определять не только длину, но и ширину, высоту, глубину. При этом важно следить, чтобы ученики при измерении меняли положение линейки, а не измеряемого объекта.

С миллиметром и километром дети знакомятся при изучении чисел в 1000 почти одновременно. Мотивация – потребность измерять отрезки, длиной меньшие см и большие расстояния.

Наглядное представление о миллиметре дети могут получить, рассматривая линейку с миллиметровыми делениями или миллиметровую бумагу. Сразу же устанавливают соотношения между мм и см. Проводится измерение отрезков в см и мм.

Представление о километре учащиеся получают лишь тогда, когда они увидят расстояние в 1 км, пройдут этот путь, сами установят связь между расстоянием в 1 км и временем, необходимым, чтобы пройти это расстояние.

Все это говорит о том, что понятие о километре нельзя дать учащимся в классе. Урок, на котором учитель знакомит учащихся с новой единицей измерения длины – километром, должен проходить вне школы. Учитель заранее намечает, где ему удобнее познакомить учащихся с километром. Намечает объект, который находится от школы на расстоянии 1 км. Желательно, чтобы, путь проходил по прямой линии. Учитель строит учащихся парами и сообщает, что сейчас они пройдут путь, равный 1 км. Он замечает время, которое потребуется, чтобы пройти этот путь, а также обращает внимание ребят на объекты, мимо которых они проходят. Когда пройден путь в 1 км, учитель снова отмечает время и сообщает: «Мы прошли 1 км, нам понадобилось для этого 15 мин». На обратном пути учитель предлагает посчитать, сколько шагов содержится в 1 км. Первая пара отсчитывает 100 шагов и уходит в конец колонны. Вторая пара также отсчитывает 100 шагов и т.д.

Учитель может привести примеры, когда непосредственное измерение длины невозможно, например расстояние между населенными пунктами, кораблями, планетами и др. В таких случаях используются специальные приборы, справочники. Иногда расстояние между пунктами вычисляют по скорости движущегося тела и времени, которое оно затрачивает на прохождение этого расстояния.

Итак, понятие «длина отрезка» формируется у детей в процессе математической деятельности: математической организацией эмпирического материала (здесь у детей формируется потребность в измерении длины); логической организации математического материала (вводится единица измерения); применения математической теории (решаются задачи на измерение длин различных отрезков). Таким образом, уже в начальной школе учащиеся получают четкие представления о длине, овладевают умением перевода величин, выраженных в единицах одних наименований, в другие, овладевают измерительными навыками.

Полученные знания, умения и навыки закрепляются в тесной связи с изучением нумерации по концентрам. Сложение и вычитание величин, выраженных в единицах двух наименований, рассматривается в концентре «Многозначные числа» при изучении арифметических действий.

Усвоение основных признаков понятия величины достигается посредством использования различных практических заданий познавательного характера, представляющих своего рода проблемные ситуации, рассмотрение которых позволяет подвести учащихся к самостоятельным выводам.

При работе над темой длина, должна выполняться следующая система упражнений, раскрывающая некоторые свойства понятия длины отрезка, а также подтверждающая справедливость математических законов и для значений величин.

I. Упражнения, иллюстрирующие упорядоченность множества отрезков отношением «иметь меньшую длину».

1. Сравните красный и синий отрезки. Какой отрезок короче? Верно ли, что красный отрезок длиннее синего; синий отрезок длиннее красного? (Это упражнение иллюстрирует свойство асимметричности отношения «меньше».)

2. Сравни красный, синий и зеленый отрезки. Назови самый короткий, самый длинный отрезок. Что можно сказать о третьем отрезке относительно самого длинного? Свойство транзитивности отношения «меньше» раскрывается при выполнении следующих заданий. Сравни по длине зеленый и синий отрезки. (Зеленый отрезок короче синего.) Сравни синий и красный отрезки. (Синий отрезок короче красного.) Сравни длины зеленого и красного отрезков. (Зеленый отрезок короче красного. Почему?) Если по длине зеленый отрезок меньше синего, а синий меньше красного, то длина зеленого отрезка меньше длины красного – подводит итог сравнения длин отрезков учитель.

II. Упражнения, приводящие к понятию длины отрезка.

1. Определите длину каждого отрезка.

2. Вычислите, на сколько сантиметров длина первого отрезка меньше длины второго отрезка.

III. Упражнения, иллюстрирующие переместительное свойство сложения длин отрезков.

Расстояние от Москвы до Свердловска 1667 км, а от Свердловска до Новосибирска 1524 км. Чему равно расстояние от Москвы до Новосибирска? Чему равно расстояние от Новосибирска до Москвы? При решении этой задачи составляются такие выражения:

1667+1524 (км) – расстояние от Москвы до Новосибирска;

1524+1667 (км) – расстояние от Новосибирска до Москвы. Решение этой задачи подтверждает свойство переместительности сложения во множестве длин отрезков.

IV. Упражнения, иллюстрирующие сочетательное свойство сложения длин отрезков.

Расстояние от Москвы до Свердловска 1667 км, от Свердловска до Новосибирска 1524 и от Новосибирска до Иркутска 1851 км. Чему равно расстояние от Москвы до Иркутска?

При решении этой задачи следует составить такие математические выражения:

(1667+1524) +1851 (км) – расстояние от Москвы до Иркутска;

1667+ (1524 +1851) (км) – расстояние от Москвы до Иркутска.

Вычисляя значения этих выражений, учащиеся устанавливают, что сложение величин ассоциативно.

V. Задания, иллюстрирующие свойство монотонности сложения в множестве длин отрезков.

От села Сосновка до села Красное 24 км, а от села Красное до села Дачное 18 км. Сравнить расстояние от Сосновки до Красного с расстоянием от Сосновки до Дачного. И по чертежу, и по условию задачи учащиеся устанавливают, что 24 < 24 + 18.

VI. Задачи, неявно вводящие следующее свойство длины отрезка: длину отрезка можно делить на любое число п одинаковых частей.

Начертите отрезок длиной 12 см и разделите его на 3 равные части, а затем каждую из них на 2 равные части. На сколько равных частей можно разделить весь отрезок? Чему равна длина шестой части данного отрезка?






map